The Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous
Monitoring of Large Scale Computing Systems and Applications

Anthony Agelastos§, Benjamin Allan$, Jim Brandt®, Paul Cassella*, Jeremy Enos’,
Joshi Fullop’, Ann Gentile$, Steve Monk?, Nichamon Naksinehaboon?, Jeff Ogden?,
Mahesh Rajan§, Michael Showerman', Joel Stevenson®, Narate Taeratt, and Tom Tucker*
*Cray, Inc. Seattle, WA. Email: cassella@cray.com
National Center for Supercomputing Applications, Univ. of Illinois, Urbana, IL.
Email: (jenos|jfullop|mung)@ncsa.illinois.edu
iOpen Grid Computing, Austin, TX. Email: (nichamon |narate|tom)@opengridcomputing.com
§Sandia National Laboratories. ABQ, NM. Email: (amagela|baallan|brandt|gentile|smonk|jbogden|mrajan|josteve) @sandia.gov

Abstract—Understanding how resources of High Performance
Compute platforms are utilized by applications both individ-
ually and as a composite is key to application and platform
performance. Typical system monitoring tools do not provide
sufficient fidelity while application profiling tools do not capture
the complex interplay between applications competing for shared
resources. To gain new insights, monitoring tools must run
continuously, system wide, at frequencies appropriate to the
metrics of interest while having minimal impact on application
performance.

We introduce the Lightweight Distributed Metric Service
for scalable, lightweight monitoring of large scale computing
systems and applications. We describe issues and constraints
guiding deployment in Sandia National Laboratories’ capac-
ity computing environment and on the National Center for
Supercomputing Applications’ Blue Waters platform including
motivations, metrics of choice, and requirements relating to
the scale and specialized nature of Blue Waters. We address
monitoring overhead and impact on application performance and
provide illustrative profiling results.

Catagories and Subject Descriptors: C.4 [Computer Systems
Organization]: Performance of Systems — Measurement tech-
niques; Performance attributes; K.6.2 [Management of Com-
puting and Information Systems]: Installation Management
— Performance and Usage Measurement; C.2.3 [Computer
Communication Networks]: Network Operations — Network
monitoring

General Terms: Management, Monitoring, Performance

Keywords: resource management, resource monitoring

I. INTRODUCTION

There exists an information gap between coarse-grained
system event monitoring tools and fine-grained (instruction,
function, or message level) application profiling tools. Coarse-
grained monitoring tools record the status of hardware pe-
riodically, typically on an interval of minutes. The data is

TThis research is part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation (award number
ACI 1238993) and the state of Illinois. Blue Waters is a joint effort of
the University of Illinois at Urbana-Champaign and its National Center for
Sugercomputing Applications.

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

SC14, November 16-21, 2014, New Orleans
978-1-4799-5500-8/14/$31.00 (©2014 IEEE

automatically checked for out-of-normal conditions that are
then communicated to system administrators for investigation.
Profiling tools typically target fine-grained characterizations
of specific applications execution profiles with respect to what
code sections take the most time and metrics such as cache
misses, memory bus bandwidth, and MPI barrier time so the
developer can tune for more efficient or balanced operation.
Along with the detailed insight, however, comes significant
execution overhead and developer time for analysis and code
tuning. Because of these costs, profiling and tuning are usually
episodic activities [1] rather than part of normal execution.
The normal behavior of the unmodified application across the
full span of inputs used on a daily basis thus remains largely
unknown. Further, its impact on system behavior and other
applications is difficult to infer from such isolated profiling.

Sandia National Laboratories (SNL) and Open Grid Com-
puting (OGC) are jointly developing OVIS, a suite of High
Performance Computing (HPC) monitoring, analysis, and feed-
back tools, to fill this information gap. The long-term goal is
to obtain insight into behavioral characteristics of individual
applications with respect to platform resource utilization (e.g.
memory, CPU, network, power) and how platform resources
are being utilized, stressed, or depleted due to the aggregate
workload and job placement on the resources. In order to reach
this goal, system-wide data must be continuously collected
at frequencies suitable for resource utilization analysis. The
data collection, transport, and storage component of the OVIS
suite is a low overhead monitoring tool called the Lightweight
Distributed Metric Service (LDMS). LDMS provides more
flexibility and proven scalability with respect to dynamic
configuration and variety of both transport and storage support
than any monitoring software we have evaluated. LDMS scales
well to many thousands of nodes and to data sampling intervals
on the order of one second. Since the overhead is low, LDMS
can be deployed on a continuous basis across an entire HPC
platform.

We elaborate on the motivation and utility of high fidelity,
whole HPC system monitoring, describing the LDMS frame-
work and its applicability to this task. Our functional compari-
son with other system level monitoring tools justifies our claim
that LDMS is a better fit for this regime. We present details
from production deployments on two significantly different
HPC systems: 1) The National Center for Supercomputing
Applications (NCSA) Cray XE6/XK?7 capability platform Blue

Waters, and 2) one of Sandia’s Infiniband connected Linux
capacity clusters, Chama. For each case we include: motivation
for resource utilization metrics being collected; collection
overhead in terms of memory footprint, CPU utilization, and
network load; and results from application performance impact
testing. Additionally we present illustrative characterizations
derived from this data which demonstrate both system and
application perspectives. This is the first presentation at this
size and fidelity of the Blue Waters Gemini based High
Speed Network (HSN) performance counter data. Finally we
summarize and present future work.

II. MOTIVATION AND GOALS

Large scale tightly coupled scientific application perfor-
mance is subject to effects of other concurrently running
applications that compete for the same shared resources (e.g.,
network bandwidth, shared file systems) and to application
placement effects, even in the absence of such contention.
Hence there is a significant body of work dedicated to optimiz-
ing application resource allocation for various objectives (e.g.,
[2]-[5]). Those carrying out such work in shared production
environments rarely have access to detailed information of ma-
chine state, such as what competing applications are running
concurrently on the system and their resource demands.

Cray XE/XK systems, which are widely-used in scientific
computing (e.g., NCSA’s Blue Waters, NERSC’s Hopper and
Los Alamos’s Cielo), have a shared network architecture [6],
[7] in which traffic between nodes dedicated to one application
may be routed through Gemini network elements that are
directly connected to nodes belonging to other applications.
Thus not only may one application’s performance be impacted
by another application’s HSN traffic, but also information
about congestion along an application’s traffic routes may not
be accessible to that application. Bhatele et. al. [8] have
observed ranges of execution time of a communication heavy
parallel application from 28% faster to 41% slower than the
average observed performance on a Cray XE6 system and have
attributed this significant performance variation to impacted
messaging rates due to contention with nearby applications
for the shared communication infrastructure.

The lack of data from a system perspective prevents users
from understanding the sometimes large variations experienced
by similar application runs and limits their ability to more
optimally place or configure jobs. Relatedly, diagnosing system
issues when degraded application performance has been expe-
rienced is difficult when there is limited data on the state of the
system and the expected behavior. At NCSA and Sandia our
large scale HPC platforms share both these problems and lack
of pertinent information. This has motivated our work in high
fidelity monitoring. Information that we deemed important to
obtain on a system-wide basis in order to gain insight into
system and application performance includes:

e Network related information: Congestion, Delivered
Bandwidth (Total), Operating System Traffic Band-
width, Average Packet Size, and Link Status

e Shared File System information (e.g. Lustre): Opens,
Closes, Reads, Writes

e Memory related information: Current Free, Active

e CPU information: Utilization (user, sys, idle, wait)

III. REQUIREMENTS
A. Blue Waters

NCSA’s Cray XE/XK platform Blue Waters [9] is com-
prised of 27,648 nodes. The network is a 3-D torus built
on Cray’s proprietary Gemini interconnect. Motivation for
monitoring began with a desire to be able to better understand
the impact from network contention on application perfor-
mance. It became apparent that we needed a method to gather
and analyze more detailed information regarding the usage
of individual network links at the administrative level. We
decided to concurrently monitor other metrics that could also
help us analyze both system and user behaviors. To this end
we assembled a team of systems engineers and applications
specialists at NCSA to compile the list of desirable metrics.

Blue Water’s size, diskless method of booting, with all
compute node images being served from a central server, and
the desire to have the monitoring come up at boot time required
the monitoring libraries and binaries to be included in the boot
image and that they be relatively small given the total image
size of about 400MB.

Finally we needed to balance the value of the data against
both the performance impact on applications and data volume
that we would need to store. Though we determined that we
could achieve most goals using a one minute collection inter-
val, we decided to also investigate the impact of a one second
interval to determine the feasability of higher collection rates
using LDMS should higher fidelity observations be desired.

B. SNL Capacity Systems

The tools typically employed on SNL HPC clusters lack
the fidelity to gather resource usage data on a per job or per
user basis. Thus an extensible tool to aid HPC system admin-
istrators, users, and procurement planners to better understand
the actual compute, memory, file system and networking
requirements of SNL codes was needed.

Additional requirements for a monitoring tool are scala-
bility to thousands of nodes and collection of hundreds of
metrics per node on intervals of seconds to minutes. The reason
for such high fidelity is to enable attribution of performance
degradation to root causes in an environment where jobs can
come and go on minute time scales. A group of HPC users at
SNL provided bounds on acceptable overhead to be less than 1
percent slowdown and up to IMB memory footprint per core.

We anticipated immediate benefits from this type of mon-
itoring in the following areas:

User code optimization: Users could optimize or debug the
per node footprint of their compute jobs by reviewing data on
CPU, memory, and network usage.

Administrative debugging: Administrators could rapidly
debug job slowness for a particular user or a whole cluster.
For example, diagnosing site shared file system performance
degradation could become as simple as looking across all
systems sharing the resource for outlier access patterns.

HPC hardware procurement planning: In order to meet
the needs of their user communities, those planning future

procurements must size the number of nodes, number of com-
pute cores, memory, and interconnect bandwidth of their next
platforms. Summary usage statistics gathered over months on
memory usage, IO router bandwidth, interconnect bandwidth
and latency would give system architects solid data to use in
deriving future system design requirements.

C. Similarities and Differences

The end goals for monitoring both NCSA’s large scale Cray
system and SNL’s smaller scale capacity Linux clusters with
respect to both metrics of interest and end use of the data
are the same. However the difficulties in achieving them vary
due to differences in scale, network topologies, network tech-
nologies, and availability of network related data. In particular
the Cray HSN presented more challenges than Infiniband with
respect to implementation of the LDMS RDMA transport and
gathering metrics related to network performance.

While we utilize information from the /sys and /proc
file systems to gather information for our commodity cluster
interconnects, this was not originally an option for the Cray
HSN. In support of the Blue Waters needs, over the past year
Cray has developed a module to expose metrics aggregated
from HSN performance counters to user space at a node level
via their gpcdr module [10].

A userspace init script on each node at boot time configures
the gpcdr module to report the HSN metrics described in
Section II. A configuration file provides a definition of each
metric. The script combines these definitions with runtime
routing data to determine the combination of performance
counters to use to generate each metric on that node. It
configures the gpcdr module with those combinations. The
gpcdr module then provides those metrics via files in the
/sys filesystem.

The difficulties in implementation of the LDMS RDMA
transport were due to the lack of readily available documenta-
tion and that early versions of the Cray Linux Environment
(CLE) did not support the functionality we required from
user space. The latter issue was resolved with the release
of CLE4.1UPO1 in late 2012. Direct Cray support resolved
documentation issues.

IV. LDMS

LDMS is Sandia’s solution to meet the needs and require-
ments just described. It was initially developed and deployed
in Sandia’s production HPC environment. NCSA also had
needs and requirements that, due to the scale and proprietary
nature of their Cray XE/XK platform Blue Waters, could not
be met using commodity monitoring tools such as Ganglia
(see Section IV-E). Collaboratively, Sandia, NCSA, and Cray
extended and deployed LDMS on the 27,648 node Blue Waters
system. This section describes the basic LDMS infrastructure,
its functional components, configuration details that give it
flexibility, details of both memory and CPU footprint on both
compute nodes and aggregators, and finally a brief comparison
with other monitoring tools in which we highlight differenti-
ating features which address our particular needs.

A. Overview

LDMS is a distributed data collection, transport, and stor-
age tool that supports a wide variety of configuration options.
A high level diagram of the data flow is shown in Figure 1.
The three major functional components are described below.
The host daemon is the same base code in all cases; differ-
entiation is based on configuration of plugins for sampling or
storage and on configuring aggregation of data from other host
daemons.

Samplers run one or more sampling plugins that periodi-
cally sample data of interest on monitored nodes. The sampling
frequency is user defined and can be changed on the fly.
Sampling plugins are written in C. Each plugin defines a
collection of metrics called a metric set. Multiple plugins can
be simultaneously active. By default each sampling plugin
operates independently and asynchronously with respect to
all others. Memory allocated for a particular metric set is
overwritten by each successive sampling and no sample history
is retained within a plugin or the host daemon.

Aggregators collect data in a pull fashion from samplers
and/or other aggregators. As with the sampler, the frequency of
collection is user defined and operates independently of other
collection operations and sampling operations. Distinct metric
sets can be collected and aggregated at different frequencies.
Unlike the samplers, the aggregation schedule cannot be al-
tered once set without restarting the aggregator. The number of
hosts collected from by a single aggregator is referred to as the
fan-in. The maximum fan-in varies by transport but is roughly
9,000:1 for the socket transport in general and for the RDMA
transport over Infiniband. It is > 15,000 : 1 for RDMA over
Cray’s Gemini transport. Daisy chaining is not limited to two
levels and multiple aggregators may aggregate from the same
sampler or aggregator /dmsd. Fan-in at higher levels is limited
by the aggregator host capabilities (CPU, memory, network
bandwidth, and storage bandwidth).

Storage plugins write in a variety of formats. Currently
these include MySQL, flat file, and a proprietary structured file
format called Scalable Object Store (SOS). The flat file storage
is available in either a file per metric name (e.g. ”Active” and
”Cached” memory are stored in 2 separate files), or a Comma
Separated Value (CSV) file per “metric set” (e.g., {Active,
Cached} memory information set is stored in a single file). The
frequency of storage is dependent on the frequency with which
valid updated metric set data is collected by an aggregator that
has been configured to write that data to storage. Collection of
a metric set whose data has not been updated or is incomplete
does not result in a write to storage in any format.

B. LDMS Components

This section describes, in greater detail, the components
that support the functionality just described. It also describes
typical configuration options used in deployment of these
components.

Idmsd: The base LDMS component is the multi-threaded
ldmsd daemon which is run in either sampler or aggrega-
tor mode and supports the store functionality when run in
aggregator mode. The ldmsd loads sampling, transport, and
storage plugin components dynamically in response to process-
owner issued configuration commands. Access is controlled via

Sampler Aggregator Aggregator

Level 2

Store

Fig. 1. In the LDMS use case depicted, rounded rectangles represent Idmsds
while circles depict metric sets. The shaded region separates levels in the
hierarchy (samplers, first level aggregators, second level aggregators left to
right respectively). Arrows depict the direction of data flow. The second level
aggregator writes to local disk.

permissions on a UNIX Domain Socket. At run time Idmsd is
also configured to listen for incoming connection requests on a
socket. While the request and configuration information use the
UNIX socket transport, a stable connection for data transfer is
established using a transport protocol specified by the user. The
same transport plug-in is used to manage all connections to a
ldmsd underlying type. Currently TCP sockets (sock transport
plugin), InfinibandiWARP RDMA (rdma transport plugin),
and Gemini RDMA (ugni transport plugin) interconnect types
are supported.

Samplers: Each sampling plugin combines a specific set of
data into a single metric set. A few of the Lustre filesystem
data entries from a metric set are shown below:

U64 17588842

U64 27547858

U64 1551040415605
U64 111681033094
U64 33185713

U64 33459578

dirty_pages_hits#stats.snx11024
dirty_pages_misses#stats.snx11024
read_bytes#stats.snx11024
write_bytes#stats.snx11024
open#stats.snx11024
closeffstats.snx11024

An Idmsd instance can support many such sampling plugins
all of which run from a common worker thread pool whose
size is user defined at Idmsd run time. Libevent (2.0 or newer)
is used to schedule sampling activities on user-defined time
intervals. Sampling plugins have options for wall-time driven
(synchronous) or interval driven (asynchronous) operation.
More than one sampling plugin hosted by a particular ldmsd
may sample a given metric value; avoiding such inefficien-
cies is up to the user. Finally, Idmsds hosting one or more
sampling plugins are generally referred to as samplers in
this document as that is their main function. There are two
chunks of contiguous memory associated with each metric
set. First is the metadata describing the elements of the data
chunk (name, user-defined component ID, data type, offset
of the element from the beginning of the data chunk) and a
metadata generation number (MGN) which is modified when
the metadata is modified. Second is the chunk of sampled
data values, which includes the MGN, the current data, a
data generation number (DGN) incremented as each element is

updated and a consistent flag. The MGN enables a consumer to
determine if the metadata it has stored matches that associated
with the data. The DGN enables a consumer to discriminate
between new and stale data. The consistent status flag tells a
consumer if the data in the metric set all came from the same
sampling event.

Aggregators: LDMS daemons configured to collect metric
sets from sampler and/or other aggregator Idmsds (See Fig-
ure 1) are called aggregators. The smallest unit of collection
is the metric set. In order to collect from either a sampler or
another aggregator, a connection is established from the col-
lecting aggregator to the collection target. LDMS incorporates
mechanisms to enable initiation of a connection from either
side in order to support asymmetric network access. One or
more metric sets are defined for each connection along with
associated collection interval and transport information. Multi-
ple connections may be established between an aggregator and
a single collection target. This supports different metric sets
having different sampling frequencies. After connection setup,
only the data portion of a metric set is pulled from a target
in order to minimize network bandwidth. The data portion is
roughly 10% of the total set size.

Each data collection is performed by a worker thread from
a common worker thread pool. Typically the worker thread
pool is no larger than the number of CPU cores available on the
host machine. A separate thread pool is configured to perform
connection setup. The connection thread pool was incorporated
to mitigate collector thread starvation that could occur on large
scale systems such as Blue Waters while trying to set up a
large number of connections that might get hung in timeout
on problem nodes.

Aggregators also have the facility to have connections
defined as standby. This enables an aggregator to maintain
connections to a set of samplers that it will not actually pull
data from unless it is notified that the aggregator that was
supposed to handle those samplers (their primary) is down.
This is desirable for large scale systems that would lose a lot
of data between a primary aggregator going down and another
starting up. Note that there is currently no internal mechanism
for a standby aggregator to detect a primary has gone down
automatically. This is accomplished either manually or by an
external watchdog program that provides notification.

Storage: Storage plug-ins are run on aggregators and handle
the task of writing data from metric sets to stable storage with
the defined storage format type. There is a dedicated thread
pool to flush data to stable storage. The flush frequency de-
pends on the number of metric sets collected by the aggregator.
In all formats a time stamp and user configured component
identifier (associated with each metric) is also written. Because
all ldmsds in a system operate asynchronously, it is possible
that from one aggregator collection to the next a metric set has
not been updated or, though highly unlikely, that a collection
occurs during the time a sample is being written on the
sampler of interest. If either or both of these cases occur, the
old or partially modified metric set is not written to storage
and collection is scheduled for the next collection interval.
The DGN and consistent status flag are used to detect these
conditions.

Figure 2 provides a data flow diagram, annotated with the

associated API’s, for each of the components just described.

/" ldmsd (sampler) N/ ldmsd (aggregator) N\

ldmsd i ldmsd
sampler {i} store
1 = api (update set status) store() api
{3te| {1} [© G Y -
| ?
B 8 £
(tric updat oy
sampler plugin j metric update L
plerpg k thread \®
n
= = {a}{{e} — g
o - o
b= g =z 8 |2
8 o! 5|2 z |2
{4} € =1{2} 2|5] \®
! o o | 8 a)
[} < R o g
9 Y | = <
(%) (%2} E E
£ 5 5|s ay |ty
LDMS API | |LDMS API
Metri t
etric Se I Metric Set
nr_pages o
nr_free_pages s 3 nr_pages
- g L> nr_free_pages
3 n
{f} {b} g c}
(on aggregator (on aggregator 03 (on update
o] complete)
upqate) lookup)] —
(ldms_xprt] i Idms_xprt] {g}
- ' U\ I

Fig. 2. Diagram of LDMS data flow with internal calls and API for the pull
model. {1} - {4} are sampler flows, which are independent from aggregator
flows {a} - {i}. Sampler flow starts from ldmsd load and configure a sampler
plugin {1}, and the plugin consequently creates an LDMS set {2}. Afterward,
ldmsd periodically tells the plugin to sample metric values from the data source
{3}. On each sample call, the plugin reads metric values from data sources
and updates the values in the metric set accordingly {4}. Aggregator flow
starts with an update thread in ldmsd aggregator performing a set lookup {a}.
The LDMS library on the sampler end will reply to the lookup request with
the metric set information or error, if the set was not found {b}. If the lookup
returns an error, the metric update thread will keep performing lookup in the
next update loop (back to {a}). After lookup completes, a local metric set
is created as a mirror of the remote metric set {c}, and a lookup_cb ()
function is called to notify ldmsd {d}. In the next update loop, the metric
update thread will do the data update {e}. If the transport is RDMA over IB
or UGNI, the data fetching {f} will not consume CPU cycles. On data update
complete, the metric values in the aggregator metric set are updated {g}, and
update_complete_cb () is called to notify Idmsd {h}. ldmsd optionally
stores the updated data if a store is configured {i}.

C. Common Configuration Options

While a complete description of all configuration options
is beyond the scope of this paper, we present those used in a
typical deployment.

A sampler is created by running a Idmsd and configuring
sampler plugins. Configuration options for /dmsd samplers are:
transport type, port number, Unix Domain Socket path and
name, debugging log file path, and plug-in name. Common
control flags for an individual sampler are: component ID,
metric set name, sampling interval, and optionally synchronous
and offset. Some samplers have additional control options.

An aggregator is created by running a Idmsd and config-
uring target connections, metric sets to collect, and collection
frequencies. Note that many metric sets can be collected on
a single connection. The configuration options in this case
for the base ldmsd are: transport, port number, Unix Domain
Socket path and name, log file path and name, amount of
memory to allocate for metric sets, and number of worker
and connection threads to create. Configuration options for
adding target metric sets to collect are: target host, connection
type, transport, port, metric set(s), and period of collection.

Note that transport and port number must match those of the
target but not collection and sampling periods. Optionally re-
dundant collection connections can be defined for fast failover
purposes. Collection can be defined to be synchronous. Note
that synchronous operation refers to an attempt to collect (or
sample) relative to particular times as opposed to relative to
an arbitrary start time.

Storage is configured by creating and configuring an ag-
gregator and then configuring a storage instance. Each store
type has specific configuration parameters. The following
parameters apply to the CSV storage type: store type, store
path and file name, metric set to store, optionally write header
to separate file. Storage may be specified at a {producer, metric
name} granularity, though the typical use case is to specify just
the metric set. In the typical case, the corresponding data from
all producers is stored.

D. Resource Footprint

In this section we provide a general description of storage,
memory, CPU, and network footprints for both samplers and
aggregators on a production capacity Linux cluster at SNL and
the Cray XE/XK Blue Waters system at NCSA. The actual
resource usage for any deployment will depend on sampler
plugin mechanisms, sampling and collection frequencies, met-
ric set size, and storage configuration.

LDMS requires less than four megabytes of file system
space to install and less than two megabytes of memory per
node for samplers to run in typical configurations. LDMS is
run per node, not per core but can be bound to a core using a
variety of platform specific mechanisms (e.g., numactl).

Memory registration of a few kilobytes is needed for
RDMA-based transport of locally collected data. Aggregation
nodes require a similar amount of registered memory per
connection. Additionally, a sampler requires storage for both
data and metadata for each metric set, and an aggregator
requires this for each metric set it will be collecting plus some
additional memory for managing this data. On Chama the
metric sets consume 44kB and on Blue Waters 24kB. A custom
memory manager is employed to manage memory allocation.

Data storage requirements are modest for the CSV storage
plug-in. A day’s worth of data for 467 metrics per node
on SNL’s 1296 node Chama system with 20 second sam-
pling/collection intervals is about 27GB (10TB raw or 2.5TB
compressed for a year). On Blue Waters a day’s worth of
raw data stored to CSV is about 43GB (16TB raw or 4TB
compressed for a year).

CPU utilization of samplers on compute nodes is typically
a few hundredths of a percent of a core in both deployments
at a sampling period of 1 second. First level aggregators on
Chama, each hosting 7 metric sets (467 metrics) from 156
samplers with collection intervals of 20 seconds, utilize about
0.1 percent of a core and 33MB of memory. The second level
aggregator, aggregating from 8 first level aggregators consumes
about 2 percent of a core and 150MB of memory. On Blue
Waters each aggregator actively collects 1 metric set with 194
metrics from 6912 nodes and maintains standby connections
and state to another 6912. Here each aggregator is allocated
900MB of RAM and consumes about 100% of a core.

On Chama the total data size for all 7 metric sets being
collected over the IB network from each node is 4kB. This
translates into an additional SMB transiting the IB fabric every
20 seconds (note that this traffic is spread across the whole
system not on a single link). On Blue Waters it is 44MB.

E. Related Work

1) Monitoring systems: Numerous tools exist for system
monitoring with Ganglia [11], in particular, in widespread use.
Ganglia has a number of features that make it unsuitable even
for general monitoring of large scale HPC systems. The project
info page [11] only claims scalability to 2000 nodes. It has
a considerable number (7) of installation dependencies, most
of which are not typically installed on large scale capability
platforms such as the Cray XE/XK platforms.

In addition, Ganglia and Nagios [12] typically target larger
collection intervals (10’s of seconds to 10’s of minutes) and
many fewer metric variables than LDMS with data used
for general monitoring (Ganglia) and failure alerts (Nagios)
rather than for system and application resource utilization
analysis. Neither supports subsecond collection frequencies.
Frequent collection using Ganglia can have significant impact.
On Chama we found the collection time per metric for Ganglia
vs. LDMS from /proc/stat and /proc/meminfo to
be about two orders of magnitude greater (i.e. 126 usec
per metric for Ganglia vs. 1.3 usec per metric for LDMS).
Ganglia includes both data and its description (metadata) at
each transmission but user-defined thresholds are typically set
to reduce the amount of data sent. This thresholding can reduce
behavioral understanding if set too high. Ganglia stores to
RRDTool [13] which ages out data and thus requires a separate
data move if long term storage is desired.

Vendor specific implementations (e.g., Cray’s SEDC [14])
for system monitoring have the potential for better performance
than general purpose tools. However, these may not be open
source and may not support user-addition of samplers and/or
general output formats.

The open-source tool most similar to LDMS is Perfor-
mance Co-Pilot (PCP) [15], with some overlap to LDMS in
design philosophies. PCP supports a pull-only model, a single-
hop-only transport, a single archive format used by its display
and analysis tools, and a large variety of data acquisition
plugins. LDMS supports C language performance-oriented
plugin storage and transport APIs, but currently provides no
GUI tools.

2) Profiling systems: Collectl [16] and sar [17] are single
host tools for collecting and reporting monitoring values.
Neither include transport and aggregation infrastructure. Both
can continuously write to a file or display; collectl can also
write to a socket. While both have command line interfaces as
well, use of these by applications would require an exec call
and parsing of output data by the application, as opposed to a
library interface. Only collectl supports subsecond collection
intervals.

LDMS is not intended as a substitute for profiling tools,
such as OProfile [18] or CrayPat [19]. LDMS takes a com-
plimentary approach by collecting system and application re-
source utilization information as a continuous baseline service.

Additionally, since LDMS samplers can be configured on-the-
fly, independent multi-user support can be configured at run-
time to provide higher fidelity insight on a per user/job basis.

3) Performance data transport: Few HPC-oriented li-
braries exist to provide scalable, fault tolerant, transport and
aggregation of frequent small, fixed size, binary messages,
although numerous libraries support Map-Reduce [20] based
on the TCP transport. MRNet [21] is a tree-based overlay
network which can be used as the transport for tools built upon
it. Its intended use is data reduction at the aggregation points
as opposed to transport of all the data. Currently there is no
support for RDMA. The tree setup does not support multiple
connection types or directions. In contrast, LDMS uses an
interval driven polling and aggregation process (above the level
of the network transport plugins) which eliminates duplicate
messages, bypasses and later retries non-reporting hosts, and
allows fail-over support for non-reporting aggregators.

FE. Blue Waters - Deployment

Figure 3 depicts the high level configuration on Blue
Waters. The sampler daemons are installed in the boot image
for compute nodes and are started automatically at boot.
Cray service nodes launch aggregator ldmsds from the shared
root partition. Four service nodes were selected to serve as
aggregators in a manner that evenly distributes traffic across
the slowest dimension of the high speed network. Their data
store files are linked to a named pipe that is used by syslog-
ng to forward the data to NCSA’s Integrated System Console
(ISC) database. ISC is a single point of integration of nearly
all system log, event, and state data that allows us to take
actions based on information that spans subsystems. ISC both
archives the data for future investigations as well as stores the
most recent 24 hours of node metrics for live queries.

Samplers Aggregators Store
(27648) (4)
RDMA Read Al

edundant”

Fig. 3. LDMS configuration on Blue Waters. This includes redundant
connections (dashed arrows) to each sampler ldmsd for fast failover capability.
Rather than writing directly to local stable storage, the aggregators each write a
CSV file to a local named pipe. Data from this pipe is forwarded by syslog-ng
to the ISC where it is bulk loaded into a database.

On Blue Waters, a sampler collects one custom dataset
whose data comes from a variety of independent sources,
including HSN information from the gpcdr module, lustre
information, LNET traffic counters, network counters, and
cpu load averages. In addition we derive information over
the sample period, including percent of time stalled and
percent bandwidth used. The latter uses estimated theoretical
maximum bandwidth figures based on link type. In production,
we currently sample at 1 minute intervals.

G. SNL Capacity Systems - Deployment

Samplers L1 Agg L2 Agg
(1296) (8) (1)
(Writes to Local Store)
agg-1

Socket File

Write

Fig. 4. LDMS configuration on Chama. RDMA is used for data reads
between the samplers and first level aggregators while socket connections are
used between first and second level aggregators. The second level aggregator
aggregator writes data in CSV format to local disk.

Figure 4 depicts SNL’s LDMS deployment on Chama.
We package LDMS software in RPMs which supplement
the TOSS2 [22] distribution. These RPMs provide libevent
2.0 [23], LDMS, and our default set of storage and sampler
plug-ins in relocatable library form to simplify installation
in the image directories served to diskless nodes. At boot
time, initialization scripts launch the hierarchy of samplers and
aggregators. We tailor machine-specific configuration files to
ensure that the daemons connect efficiently; LDMS does not
support autodiscovery-based configuration.

We deploy LDMS samplers on the compute nodes and
aggregators on service nodes of Chama, using the RDMA
transport to minimize interference with computations. A disk-
full server runs a second level aggregator configured with the
CSV storage plug-in and the socket transport, pulling data from
the service nodes.

Users seeking additional data on these systems may run
another LDMS instance configured to use their specified
samplers and a different network port as part of their batch
jobs. The owner of an LDMS instance controls it through a
local UNIX Domain socket.

On Chama, a sampler collects 7 independent metrics sets
from sources in /proc and /sys including memory, cpu
utilization, lustre information, nfs information, ethernet and
IB traffic. In production, we sample at 20 second intervals.

V. IMPACT TESTING AND ANALYSIS

We ran both actual applications and test codes concurrently
with LDMS to assess the impact of additional operating system
(OS) noise and network contention on applications’ execution
times. The effect of OS noise on application execution times
on Linux clusters has been well studied (e.g., [24]-[26]).
Ferreira et. al. [26] have shown that various OS noise patterns
for a consistent and representative HPC “noise amount” can
result in slowdowns of up to several orders of magnitude
for representative HPC applications at large scale (up to 10K
nodes). The LDMS experiments for this study were conducted
using several realistic sampling/collection periods (i.e., 1, 20,
and 60 seconds) to check for OS noise impact on application
run times.

A. Blue Waters

We ran a variety of short benchmarks across the machine.
PSNAP is discussed in Section V-Al and Figure 5; all others
are described in subsequent subsections and summarized in
Figure 6.

le+08 ¢ . k|
N no sampling ——— -
- 1 sec sampling -
le+07 - f -
1e+06 - :
$ i R
o looooo - :
c i R
S : .
B 10000 - -
) i i
C - -
- 1000 -)
100 - :
10 - S -
1 , fﬁ“ XX ::x, ~
50 100 150 200 250 300 350 400 450 500 550 600
Loop Duration (us)
Fig. 5. PSNAP results: Histogram of occurrences vs. loop time (us) with 1

second sampling data (Xs’) compared to none (red boxes).

1) PSNAP: PSNAP [27] is an OS and network noise
profiling tool which performs multiple iterations of a loop
calibrated to run for a given amount of time. On an unloaded
system, variation from the ideal amount of time can be
attributed to system noise. We ran PSNAP with and without
monitoring in order to determine the additional impact of the
monitoring. PSNAP was run without its barrier mode, making
the effects on each node independent. 32 tasks per node were
executed with a 100 us loop.

Figure 5 compares monitored and unmonitored results. The
one second sam